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A math model of a real-world network typically starts as a graph. This is
weird, because almost all real networks are better represented as
edge-weighted graphs. The reason this isn’t the default (I guess) is that
there are several conceptually different interpretations of edge-weight:

flow capacity (road network, water network)

distance or cost (TSP)

strength of association (close friend or acquaintance or Facebook
friend).

I’ll consider the last class and think of social networks – collaboration
networks, corporate directorships, Senators’ voting record, etc (note many
biological networks are also in this class). Even within this class of social
networks there are different interpretations of strength of association ,
but (envisaging friends) I abstract this as frequency of interaction.
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Introduce randomness by saying:

for each edge e = (vy), individuals v and y interact at the times of a
rate-we Poisson process.

So this is the meaning of the edge-weights we ≥ 0.

Aside. As discussed in my 2013 paper Interacting Particle Systems (IPS)
as Stochastic Social Dynamics this setup underlies what probabilists call
IPS: each individual is in some “state” and some update rule changes the
states when individuals interact. This covers numerous models like the
voter model or SIS epidemic – a line of research going back to statistical
physics study of the Ising model on Zd .

This talk goes in a different direction: Suppose we are interested in
some quantitative feature of a network which we could calculate if we
knew exactly what the network is.
But suppose we don’t know it . . . . . . . . . . . . then what can we do?

David Aldous A framework for imperfectly observed networks



I’ll call this the imperfectly-observed network problem. I will talk
about one particular formalization – not claimed to be useful for
real-world data but (I do claim) interesting as math theory.

A network is a finite edge-weighted graph. We are concerned with some
“statistic” Γ, a functional G → Γ(G ) on finite edge-weighted graphs G .
There is a network G true with known vertices but unknown edges and
edge-weights we . What we observe is the interaction process described
above. That is, what we observe over time [0, t] is the Poisson(twe)
number of interactions Ne(t) over edges e. We can represent our
observations in two equivalent ways: either as the random multigraph
with Ne(t) copies of edge e, or as the random weighted graph G obs(t) in
which edge e has weight t−1Ne(t).

How do we use these observations to estimate Γ(G true), and how
accurate is the estimate?
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Some general comments.

For any problem about networks where you assumed the network is
known, you could ask this “imperfectly-observed” variation.

There are many other ways to think about “imperfectly-observed
networks” [one popular way will be shown later].

We always have the naive frequentist estimator Γ(G obs(t)). It’s
natural to study, but there is no reason to think it is optimal.

We always have the naive Bayes estimator (flat prior on each we)
but . . . . . .

“Computation is free” – not concerned with computational
complexity – instead we regard observation time as the “cost”.

Any estimator like Γ(G obs(t)) for fixed t will have error depending on the
unknown G true. The “elegant” formulation of a mathematical problem is:

Program

Given a statistic Γ, define a (“universal”) stopping rule T and an estimator
such that the relative error of the estimator, say Γ(Gobs(T ))/Γ(G true)− 1, is
w.h.p. small uniformly over all networks G true.
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Program

Given a statistic Γ, define a (“universal”) stopping rule T and an
estimator such that the relative error of the estimator, say
Γ(G obs(T ))/Γ(G true)− 1, is small uniformly over all networks G true.

The bottom line of this talk. We have no idea how to do this for most
interesting/natural statistics, but we can do this for a few statistics which
are less interesting/natural.

This is ongoing joint work with grad student Lisha Li.
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Given (G ,w), write n for the number of vertices and wv =
∑

y wvy for
the total interaction rate of vertex v . We are thinking of results for large
networks, formalized as n→∞ limits. For discussion purposes here
(not as assumptions in theorems) assume wv ≡ 1, so in time t we have
seen on average t interactions involving each vertex, that is our observed
multigraph has on average t edges at each vertex.

Qualitatively there are 3 time regimes.

For t = o(1) can only estimate statistics like (weighted) degree
distributions (cf. birthday problem).

To make the observed graph connected we typically need
t = Θ(log n) (cf. coupon collector problem) at which time we see
Θ(log n) edges per vertex and (intuitively) “we can estimate
anything well”.

The interesting/challenging regime is where t is a (large-ish)
constant; what can we infer when we have seen 33 interactions per
individual?
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The weird logic of freshman (frequentist) statistics

Suppose we have a theorem of the format

Theorem: if G true has property Q∗ then with ≥ 95%
probability Gobs has property Q.

We can restate this as an inference procedure of the format

Inference: if G obs does not have property Q then we are
≥ 95% confident that G true does not have property Q∗.

But we want to state the inference in “positive” terms, so we negate the
property and restate as follows.
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If we wish to justify an inference procedure of the format

Inference: if G obs has property P then we are
≥ 95% confident that G true has property P∗

then we need to prove a theorem of the format

Theorem: if G true does not have property P∗ then with
≥ 95% probability Gobs does not have property P.

Usually with random graph models we are interested in establishing some
“desirable” property; paradoxically in our framework we need to show
G obs has “worse” properties than G true. But our intuition is that the
randomness in G obs will typically make it “worse” than G true, so this
might be true.

For a first concrete statistic, recall that connectedness of a weighted
graph (G or w) is often quantified by the spectral gap of the graph
Laplacian, that is of the symmetric matrix w extended to the diagonal via

wvv = −wv = −
∑
y 6=v

wvy .
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It is immediate from the extremal characterization of spectral gap that

E gap(G obs(t)) ≤ gap(G true).

The inequality goes in the right direction, but may be trivial: the gap is
zero while G obs(t) is not connected. Better to use some stopping time T
at which G obs is connected. Note

E gap(G obs(T )) ≤ gap(G true) FALSE

Need to use un-normalized edge-counts N(t) = (Ne(t)) to get

E gap(N(T )) ≤ gap(G true) ET .

Still only half-satisfactory – running the observation process once gives
one realization of the pair (T , gap(N(T ))) but would need to repeat the
process, unless we knew these RVs are concentrated around their means.
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Alas, connectivity (above) involves the wrong time regime t = Θ(log n).
Here is a fundamental, albeit vague, open problem in the “interesting”
time regime t = Θ(1).

if we observe G obs(t) has a “highly connected” (in some sense)
giant vertex set of size αn, then we can infer that G true has a
similarly “highly connected” giant vertex set of size β(α)n?

There are many ways to quantify connectedness by a statistic Γ in this
context, for instance via spectral gap of the (restricted) graph Laplacian.
We conjecture that our program (repeated below) can be done in this
setting. The intuition is that randomness makes G obs less well connected
than G true – but we have no idea how to prove any reasonable version.

Program

Given a statistic Γ, define a (“universal”) stopping rule T and an
estimator such that the relative error of the estimator, say
Γ(G obs(T ))/Γ(G true)− 1, is small uniformly over all networks G true.
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On the positive side, here is a “sideways” approach to our program.
Consider

T tria
k = inf{t : observed multigraph contains k edge-disjoint triangles}.

T span
k = inf{t : observed multigraph contains k edge-disjoint spanning trees}.

Proposition

s.d.(T tria
k )

ET tria
k

≤
(

e

e − 1

)1/2

k−1/6, k ≥ 1.

s.d.(T span
k )

ET span
k

≤ k−1/2, k ≥ 1.

So here the bounds are independent of w, meaning that we can estimate
the statistics ETk without assumptions on w.

So the “sideways” approach is to seek some observable quantity which is
concentrated around its mean, independent of w, which therefore
provides an estimator of the statistic defined by the expectation.
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From arXiv preprint Weak Concentration for First Passage Percolation
Times on Graphs and General Increasing Set-valued Processes and the
title give a hint of the proof method.

Our observation process, considered as a growing multigraph, is an
increasing set-valued process, for which there is a simple general bound

on s.d.(T )
ET for the first time T that some “increasing” property holds. In

our context, we have

Tk = inf{t : observed multigraph contains k edge-disjoint objects}

and the argument for the bound uses only one object-specific calculation,
which I will outline as a game, which is trivial in the two cases (triangles
and spanning trees) above.
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The game. I choose a multigraph with the given “contains k
edge-disjoint objects” property, and I then delete an edge, and then
show you. Can you always find many different ways to restore the
property by creating a few new edges?

Spanning trees; deleting edge creates a split (A,V \ A) of vertex-set V;
sufficient for you to create any edge between A and V \ A.

Triangles: sufficient for you to create one new triangle.

The bound in the general inequality involves (worst-case) mean “restore”
time in the observation process.

Open problem; Can we do this for the “k-edge connected” property?
(Menger’s theorem doesn’t seem to help).
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Here is a first example of a “natural” statistic. Identify a graph with its
matrix w of edge-weights.

Maximum matching. Take n even. A matching is a set π of n/2 edges
such that each vertex is in exactly one edge.
The weight of the matching is weight(π,w) :=

∑
e∈π we .

The maximum-weight is Γ1(w) := maxπ weight(π,w).
Can we estimate Γ1(w) from the observed G obs(t) at (large) times
t = O(1)?

The naive frequentist estimator Γ1(G obs(t)) does not work – consider the
“dense” case of the complete graph with edge-weights we = 1/(n − 1).

We will finesse this issue by reformulating the problem. Because
real-world networks are typically sparse, we can say that, although we
require our estimates to be valid for all G true, we only require them to be
informative for sparse G true.
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Informally, we regard a weighted graph as sparse if the vertex-weight
sums wv =

∑
y wvy are dominated by the largest O(1) terms.

For discussion, assume wv ≡ 1. For a sparse graph we will have
Γ1(w) = Θ(n), so we reformulate the problem as

can we estimate n−1Γ1(w) up to small additive error?

Such an estimator will be informative in the sparse case, but not for
dense graphs like the complete graph above, for which Γ1 = Θ(1).

A moment’s thought says that to know anything about the weight of
some specific edge we must observe at least two interactions (cf. unseen
species problem).
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This suggests making an estimator using only edges for which we have
observed at least two “interactions”. That is, we define

weight2(π,G obs(t)) := t−1
∑
e∈π

Ne(t)1{Ne(t)≥2}

Γ2(G obs(t)) := max
π

weight2(π,G obs(t))

and our goal is to obtain a bound of the form

En−1
∣∣Γ2(G obs(t))− Γ1(w)

∣∣ ≤ ψ(t) ∀w. (1)

The best we can hope for is a ψ(t) = O(t−1/2) bound: consider the
graph with only one edge. And a conceptually straightforward argument
(large deviations and counting) shows (1) is true for some

ψ(t) = O(t−1/2 log t).

[Also a factor maxv wv , but we can estimate this more quickly].
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Observed and true community structure.

For a subset A of vertices write A∗ for the set of edges with both
end-vertices in A. Write

wtrue
m = m−2 max

{∑
e∈A∗

we : |A| = m

}

– essentially the maximum edge-density in a size-m community. Ignoring
computational complexity, suppose we can compute the analogous
observable quantity

W
obs

m (t) = m−2 max

{∑
e∈A∗

Ne(t)/t : |A| = m

}
.

To make inferences from the observed G obs(t) to G true we need
m ∼ γ log n. Then (as in previous example, just using large deviations and
counting) we can be confident that wtrue

m is in a certain interval, roughly[
W

obs

m (t)−
√

2W
obs
m (t)
γt ,W

obs

m (t)

]
.
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Here is one case where it seems impossible to carry out this program. It
is a basic example of a process built over a weighted graph.

First passage percolation (FPP).

(somewhat different setting from Remco’s]
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Given an edge-weighted graph (G ,w) with distinguished vertices
(v∗, v∗∗), create independent random variables ξe with Exponential(we)
distributions, and view ξe as the “traversal time” of edge e. Let X (w) be
the (random) FPP time from v∗ to v∗∗, that is the minimum value of∑

e∈π ξe over all paths π from v∗ to v∗∗. Take the expectation of this
FPP time as our statistic

Γ(w) = EX (w).

First 2 observations

For any G we can estimate Γ(w) roughly (order of magnitude) in
time Γ(w) by using the observation process to simulate the FPP
process itself.

For a linear graph, edge-weights unknown but Θ(1), we have
Γ = Θ(n) but we can estimate in observation time Θ(log n).
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We spent some effort trying to find

a universal estimator of Γ(w) whose observation time T is
always O(Γ(w)) and for some “nice” graphs is o(Γ(w)) .

But the following construction convinces us this is impossible!

There exist graphs G∗ where “observation time needed” and actual FPP
time are the same order.

So given a “nice” graph with T � Γ(w) we could superimpose such a
graph G∗ whose times were inbetween those times.. This will fool the
algorithm.
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3 more 1-slide topics, in different directions.

A very different framework for “imperfectly-observed networks”.

What about Bayes?

Bond percolation on general weighted graphs.
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A very different framework for “imperfectly-observed networks”.

[from a 2011 survey Link prediction in complex networks by Linyuan Lü
and Tao Zhou, cited 683 times.]

Consider unweighted graphs, and only the possibility of unobserved edges
– this is called link prediction. In this literature, the goal is to define an
algorithm that takes the observed edges as input, and outputs an ordering
e1, e2, . . . of all the other possible edges, intended as decreasing order of
assessed “likelihood” of the edge being present. This is done by defining,
for each possible edge (v1, v2), some statistic based on (typically) the
local structure of the observed graph near v1 and v2, for instance

s(v1, v2) =
|N (v1) ∩N (v2)|
|N (v1)| |N (v2)|

where N (v) is the set of neighbors of v . Then list edges in decreasing.
order of s(v1, v2).

In this framework there is no probability model involved; different
algorithms are compared empirically by taking a real-world network,
randomly deleting a proportion of edges to create a synthetic “observed
graph”, and comparing the algorithms’ effectiveness in predicting the
deleted edges.
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Bayesian approach. Returning to our framework – unknown G true and an
observed Gobs(t) – it is conceptually simpler to take the Bayesian view. Put a
prior on G true, compute the posterior distribution of G true given Gobs(t), then
any given statistic has a posterior distribution.

In particular, if we assume G true is connected and wish to estimate the spectral
gap of the graph Laplacian, in our previous setup we need t = Θ(log n) to
make Gobs(t) connected and get a non-trivial estimate, where in the Bayes
setup we can put a prior on connected graphs.

But not so easy in practice – how do you choose a plausible prior?

To play with the mathematics, consider the “naive Bayes” procedure – take as
prior the uniform law on [0,∞) for each wij – for which the posterior
distribution on w given observed interactions (nij) is that the wij are
independent with densities

ν → p(nij ; νt) (2)

where p(k;λ) denotes the Poisson probability function.

Informally, this “flat” prior lives on highly connected graphs, and for small t the

posterior distribution on w will concentrate on too-highly-connected graphs,

with spectral gap around ne−t . So we will not get a good estimate of true

spectral gap before time Θ(log n).
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Bond percolation and giant components.

Take our background setting of an arbitrary edge-weighted n-vertex graph
(G ,w). To the edges e ∈ E attach independent Exponential(rate we)
random variables ξe . In the language of percolation theory, say that edge
e becomes open at time ξe . The set of open edges at time t determines
a random partition of vertices into connected components; write C (t) for
the largest number of vertices in any such connected component.

Next result from arXiv preprint The Incipient Giant Component in Bond
Percolation on General Finite Weighted Graphs.
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Now consider a sequence of such weighted graphs with n→∞, where
both the graph topologies and the edge-weights are arbitrary subject only
to the conditions that for some 0 < t1 < t2 <∞

lim
n

ECn(t1)/n = 0; lim
n

ECn(t2)/n > 0. (3)

In the language of random graphs, this condition says a giant component
emerges (with non-vanishing probability) sometime between t1 and t2.

Proposition

Given a sequence of graphs satisfying (3), there exists a deterministic
sequence τn ∈ [t1, t2] such that, for every sequence εn ↓ 0 sufficiently
slowly, the random times

Tn := inf{t : Cn(t) ≥ εnn}

satisfy
Tn − τn →p 0.

Proposition 2 asserts, informally, that the “incipient” time at which the
giant component starts to emerge is deterministic to first order.
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